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Because of the difficulty of obtaining ground truth for real
images, the traditional technique for comparing low-level vision
algorithms is to present image results, side by side, and to let the
reader subjectively judge the quality. This is not a scientifically sat-
isfactory strategy. However, human rating experiments can be done
in a more rigorous manner to provide useful quantitative conclu-
sions. We present a paradigm based on experimental psychology
and statistics, in which humans rate the output of low level vision
algorithms. We demonstrate the proposed experimental strategy by
comparing four well-known edge detectors: Canny, Nalwa–Binford,
Sarkar–Boyer, and Sobel. We answer the following questions: Is
there a statistically significant difference in edge detector outputs
as perceived by humans when considering an object recognition
task? Do the edge detection results of an operator vary significantly
with the choice of its parameters? For each detector, is it possible to
choose a single set of optimal parameters for all the images without
significantly affecting the edge output quality? Does an edge detec-
tor produce edges of the same quality for all images, or does the
edge quality vary with the image? c© 1998 Academic Press

Key Words: edge detection; low-level processing; segmentation;
performance evaluation.
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between fixed versus adaptive parameter values and the edge detectors? 3. For
fixed parameters, are there differences in ratings between edge detectors?
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I. INTRODUCTION

What is more interesting is that we are willing to develop one more edge
detector, but we do not want to develop objective and quantitative methods
to evaluate the performance of an edge detector. About three decades of
research on edge detection has produced N edge detectors without a solid
basis to evaluate the performance. In most disciplines, researchers evaluate
the performance of a technique by a controlled set of experiments and speci-
fy the performance in clear objective terms. In edge detection, practically
no efforts were even made to define objective measures. We still evaluate
the performance of an edge detector by looking at the results. (Ramesh Jain
and Tom Binford, 1991)

The ubiquitous interest in edge detection stems from the as-
sumption that object boundaries manifest as intensity changes.
The front end of most vision systems consists of an edge detec-
tion module. Quantitative performance comparison of these low
level vision modules requires ground truth. In fact, Hooveret al.
[2] at USF have recently conducted such a comparison study
based on manually constructed ground truth for range segmen-
tation tasks. However, manually constructing ground truth for
real intensity images is problematic. Even the definition of an
intensity edge is debatable. Should one consider just step edges?
What should be the ideal profile of a step edge? Where would
the edge location be marked for a gradually changing edge?
Hence, we believe that in the near future creating ground truth
of realistic intensity images is a practical impossibility. The dif-
ficulties involved in obtaining ground truth for real images are
so great that, as evidenced by the prior work data summarized in
Table 1, researchers simply do not conduct quantitative evalu-
ations of edge detectors using real images. (Table 1 lists con-
tributions to the problem of edge detection recently published
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TABLE 1
Edge Detection Algorithms in PAMI (Jan. 93–June 95), SMC (Jan. 93–Aug. 95), R&A (April 94–June 95),

CVGIP (Jan. 90–July 95), IJCV (Jan. 90, Dec. 94), PR (Jan. 93–July 95)

Nature Performance Real image Algorithms
Source of the algorithm presented on ground truth compared

[3] (PAMI, 1995) Covariance models 3 real 0 None
[4] (PAMI, 1994) Expansion matching 1 real 0 Canny
[5] (PAMI, 1993) Dispersion of gradient 1 real 0 Sobel

direction
[6] (PAMI, 1993) Regularization 2 real 0 LoG, Canny
[7] (SMC, 1995) Surface fitting 2 synth 0 Sobel, Haralick
[8] (SMC, 1994) Neural networks 2 real 0 None
[9] (CVGIP, 1994) Voting based 3 real 0 Canny

3 range
2 synth

[10] (CVGIP, 1994) Linear filtering 1 real, 1 synth 0 LoG
[11] (CVGIP, 1992) Maximum likelihood 1 synth 0 Rosenfeld & Thurston
[12] (CVGIP, 1991) Linear filtering 3 real, 1 synth 0 LoG, Canny
[13] (CVGIP, 1991) Linear filtering 2 real 0 Deriche
[14] (CVGIP, 1991) Derivative based 1 real 0 None
[15] (IJCV, 1994) Linear filter 1 synth, 2 real 0 None
[16] (IJCV, 1994) Linear filter 1 synth 0 None
[17] (IJCV, 1993) Analog network 2 real Reconstructed image Log

as ground
[18] (PR, 1995) Statistical 4 real 0 Canny, LoG
[19] (PR, 1995) Search 1 synth, 3 real 0 Canny, LoG,

Ashkar & Modestino
[20] (PR, 1995) Filtering 4 real 0 None
[21] (PR, 1994) Neural nets 1 synth, 1 real 0 Canny
[22] (PR, 1994) Genetic opt. 1 synth, 1 real 0 Simulated anneal local search
[23] (PR, 1994) Co-occurrence 4 synth, 2 real 0 Canny, LoG, Jain’s stochastic
[24] (Pr, 1994) Statistical 1 synth, 1 real 0 Sobel, DoG, Haralick,

Anisotropic diffusion
[25] (PR, 1993) Local masks 2 synth, 2 real 0 Other hierarchical
[26] (PR, 1993) Filtering 1 real 0 0
[27] (PR, 1993) Statistical 3 real 0 Nalwa, DoG

Note.The number of images is counted from the images presented in the paper. Ground truth is counted as objective specification of correct edge pixels. The
last column lists the edge algorithms considered in the comparison.

in major journals.) Quantitative evaluation, when done at all,
is done on synthetic images. However, most researchers do not
regard results on synthetic images as convincing and still desire
to see results on real images.

Another possible strategy would be to measure the perfor-
mance enhancement of a complete general vision system with
different edge detectors. Unfortunately, there is no such compe-
tent computer vision system. Thus, it has become an accepted
practice to compare edge detectors by presenting visual results
side-by-side for the reader’s subjective evaluation. That is, we
resort to asking the only known object recognition system with
proven competence—the human. But this practice raises many
questions. How variable is the subjective judgement about an
edge detector across images? How well do different people agree
in their subjective judgments of an image? To what extent are
the conclusions affected by choice of images?

The purpose of this paper is to describe a new (to computer
vision) experimental framework which allows us to make quan-
titative comparisons using subjective ratings made by people.
This approach avoids the issue of pixel-level ground truth. As
a result, it does not allow us to make statements about the fre-
quency of false positive and false negative errors at the pixel
level. Instead, using experimental design and statistical tech-
niques borrowed from psychology, we make statements about
whether the outputs of one edge detector are rated statistically
significantly higher than the outputs of another.

We believe that edge characterization has to be done in the
context of a visual task. The edge evaluation strategy depends on
what we want to do with the edges. In the proposed framework,
the edge ratings are done in the context of object recognition.
The edges are rated by human experts according to whether all
of the edge information relevant for recognizing an object is
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present, without distracting edges. The experts in our study are
students with extensive experience in dealing with images on
the computer.

The paper is organized as follows. Related work is discussed
in the next section. The edge detectors and the image set are
discussed in Section III. The comparison was conducted in two
stages. Every edge detector has parameters whose values need
to be set. In the first stage, discussed in Section IV, we con-
ducted experiments to choose these parameter values. Then the
outputs of the edge detectors were compared in the second set
of experiments, described in Section V. We discuss the results
and conclude with Section VI.

II. RELATED WORK

Recent work in the design of edge detectors is summarized in
Table 1. Our work deals not with the design of an edge detector,
but rather the methodology for comparing edge detectors. One
of the earliest comparisons was done by Abdou and Pratt [28].
This was followed by work by Fram and Deutsch [29], Peli
and Malah [30], and more recently, Ramesh and Haralick [31].
The emphasis in this line of work has been to characterize the
edge detector based on local signal considerations. The typical
quantitative measures have been the probability of false alarms,
probability of missed edges, errors of estimation in the edge
angle, localization errors, and the tolerance to distorted edges,
corners, and junctions.

While these “signal based” approaches are valuable and have
their place, we believe that local, signal based measures fail to
capture the globally coherent nature of perception. In this view,
it is not surprising that the field contains many papers describ-
ing “optimal” edge detectors, all of whose performance leaves
something to be desired. This would be the natural result of
using criteria for optimality which do not adequately charac-
terize the real-world problem. (And as commented by Haralick
and Shapiro [32], “all evaluation metrics... leave something to
be desired.”) We are not proposing optimality criteria which ap-
propriately capture the nonlocal and Gestalt-like nature of object
recognition. However, techniques do exist to use subjective rat-
ings by human judges in an objective and quantitative manner.
This approach offers itself as a nice complement to signal-based
quantitative measures. This approach is also compatible with
recent suggestions by other researchers:

Objective evaluation of an early vision algorithm is difficult without spec-
ifying the purpose of a total system which includes the algorithm. One
possible way is to compare the performance of an algorithm with that of
human vision. (Shirai, 1994)

Although it would be nice to have a quantitative evaluation of performance
given by an analytical expression, or more visually by means of a table
or graph, we must remember that the final evaluator is man and that his
subjective criteria depend on his practical requirements. In order to do
this, a better presentation of the output may help to make judgments about
the obtained results (partial and final); image visualization in a controlled
environment with real time presentation greatly facilitates the observers’s
evaluation. (Cinque, Guerra, and Levialdi, 1994)

We agree with the quote above that ratings of a computer vi-
sion algorithm have to be made in the context of a visual task
[33]. So far, edge detection modules have been designed and
evaluated in isolation, except for the recent work by Ramesh
and Haralick [31]. The evaluation paradigm in this paper is goal
oriented; in particular, we consider edge detection in the context
of object recognition. The human judges rate the edge detec-
tors based on how well they capture the salient features of real
objects.

We also firmly believe that evaluation should be done using
real images. As Zhou, Venkateshwar, and Chellapa [35] note,
“any conclusions based on these comparisons of synthetic im-
ages have limited value. The reason is that there is no simple
extrapolation of conclusions based on synthetic images to real
images!”

The use of human judges to rate image outputs must be ap-
proached systematically. Experiments must be designed and
conducted carefully, and results must be interpreted with the
appropriate statistical tools. The use of statistical analysis in
vision system performance characterization has been rare. The
only prior work in the area that we are aware of is that of Nair
et al. [36], who used statistical ranking procedures to compare
neural network-based object recognition systems.

In a related work, in 1975 Fram and Deutsch [29] used human
subjects to judge the discriminability of certain synthetic edge
signatures. These results were then compared with the edge de-
tectors available at that time. The focus was on human versus
machine performance rather than using human ratings to com-
pare different edge detectors.

III. METHODS

A. Edge Detectors

Four different edge detectors were selected for comparison.
These are (1) the well-known Canny edge detector [37], (2) the
traditional Sobel edge detector, supplemented with hysteresis
thresholding as used in the Canny, (3) the Nalwa–Binford edge
detector [38], and (4) the Sarkar–Boyer edge detector [12]. The
Sobel is the baseline historical “standard” and is still frequently
used in published research today. The Canny is a modern “stan-
dard,” in the sense that papers describing new edge detectors
often compare the results to those of the Canny, as evidenced
in Table 1. The Nalwa–Binford edge detector was chosen to
represent the “surface fitting” approach to edge detection. The
Sarkar–Boyer edge detector was chosen to represent the cur-
rent state of the art in the “zero crossing” approach. Each of the
detectors, other than the Sobel, has been described in a publi-
cation in a top journal. The implementation of the Sobel edge
detector was written by us. The implementation of the Canny
edge detector originally came from the University of Michigan
and was incrementally modified by us. The implementations of
the Nalwa–Binford and Sarkar–Boyer edge detectors were ob-
tained from the original authors. (We do not attempt to explain
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the technical details underlying each of the edge detectors here.
The interested reader may consult the original publications [12,
37, 38].)

B. Images

Figure 1 shows the eight images that were used in this ex-
periment. We chose the images to represent a wide variety of

FIG. 1. The eight images used in the experiments.

objects and contexts. Each image contains a single complete
object in the central portion of the image, photographed from an
intuitively typical orientation, pretty much as initially encoun-
tered in its natural setting.

The objects were choosen so that they are readily recognized
by humans at theentry level, the first category level that comes to
mind when viewing an object. To verify this we ran experiments
in which images were shown for 1 s and subjects attempted to
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FIG. 1—Continued

identify them. The percentage of subjects providing either the
correct name for the object or a synonym averaged 98.5% across
the images, indicating that the objects are easily and readily
recognizable by humans.

The original color negatives were digitized and converted to
grayscale intensity images. The contrast and brightness of the
images were changed to improve their quality on slides and
to make them suitable for the psychological experiment of the
previous paragraph. The images were then downsampled to 512
by 512, and some were cropped so there would be only one

complete object located in the center of the image. This results
in some variation in the final image size.

C. ANOVA

In our analysis of the experimental data we used the analysis
of variance (ANOVA) technique to separate the dependencies
among the variables and to ascertain the statistical significance
of observed differences. For the theory behind ANOVA analysis
and a full development of the approach, we refer the reader to a
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relevant textbook (for example, [39, 40]). Here, we give only a
brief sketch of how the approach is applied.

The subject’s ratings of the edge images are a function of the
images, edge detectors, their interaction, and random error (or
“noise”). Considering the overall variance of the subject ratings
gives us a global idea of the variation, but it does not tell us how
the ratings (the dependent variables) vary with the individual
independent parameters and their interaction. In other words the
overall variance does not let us pinpoint the source of the vari-
ance to the individual independent variables. However, ANOVA
allows us to accomplish this in an elegant manner.

In essence, the ANOVA involves a linear regression model in
which subject’s ratings are the dependent variable and the in-
dependent variables are detectors, images, and their interaction
(combined effects). ANOVA separates and compares variation
due to the independent variables to variation due to error. In our
case, the error is the random individual differences among raters
(or experimental “noise”). For example, consider that a set of
Ne edge detectors are run on each of a set ofNi images and that
each edge detection is rated byNj judges. The total variance
would be the sum of differences of each of theNe × Ni × Nj

individual ratings from the overall mean rating. The ANOVA
procedure divides this total variance into four portions: one due
to the edge detector, one due to the image, one due to the inter-
action of detector and image, and one due to “error” (random
variations between raters). The interaction of detector and image
is the unique effect of a combination of detector and image. It
is equal to the variance leftover after subtracting the individual,
additive effects of detector and image. By comparing the vari-
ance due to an independent variable to the error variance, it is
possible to estimate how likely it is for the variance due to the
independent variable to have arisen by chance. If the variance of
the independent variable is much larger than the error variance,
then it is unlikely to be due to chance and we conclude that the
effect of the independent variable is probably real or statistically
significant.

It is also possible to compare the relative magnitude of the
variances for the different independent variables and judge
which independent variable has more effect on the rating, using
an effect-size analysis. This analysis uses the sources of variance
in the ANOVA to determine the sizes of the effects of (amounts of
variance due to) images, detectors, and their interaction, relative
to the amount of error. This ratio is termed omega squared [39].

It may also be noted that regression is notorious for its lack
of robustness due to outliers which in our case occurs when
the ratings of a few judges are not “consistent” with others. As
discussed later, we explicitly check for this rater consistency
to check for the presence of outlier ratings. We have not found
outliers to be a problem in our experiments.

IV. EXPERIMENT #1: EDGE DETECTOR
PARAMETER SETTINGS

... all the edge detectors referred to above need one or two thresholds to be
preset; we have observed in our experiments (We are certain that previous

researchers have too) that results vary considerably based on the thresholds
used.... (Zhou, Venkateshwar, and Chellappa, 1989)

This first experiment is aimed at determining whether (1) it
is sufficient to use a fixed set of parameter values for a given
edge detector across all of our test images, or (2) it is neces-
sary to allow the parameter settings to vary between images. If
the conclusion is that a fixed parameter set is sufficient, then
the experiment should identify a parameter set for each edge
detector. If the conclusion is that the parameter set should vary
with image, then the experiment should identify an appropriate
parameter set (for each edge detector) for each of the test images.

A. Edge Detector Parameter Settings

Each edge detector has some parameters which must be set
to appropriate values. For a comparison of edge detectors to
be worthwhile, the set of parameter values used in each detector
must be “tweaked” equally well. For each detector, we identified
the most relevant parameters to be considered in tuning, based on
suggestions in the original papers describing the edge detectors
and on our own experimentation with them.

For the implementation of the Sobel evaluated here, the two
parameters considered in tuning are just (1) the value of the low
edge strength threshold for hysteresis and (2) the value of the
high threshold for hysteresis. For the Canny, the three parameters
considered in tuning are (1) the low hysteresis threshold, (2) the
high hysteresis threshold, and (3) theσ of a Gaussian which con-
trols the amount of smoothing. For the Nalwa–Binford detector,
the two parameters considered in tuning are (1) a blurring pa-
rameter which reflects the degree of edge blur within the fixed
(five pixel) operator window and (2) the scaled edge contrast
threshold. The latter contrast threshold (as in the source code)
is actually twice the step edge height in gray levels. For the
Sarkar–Boyer detector, the parameters considered in tuning are
(1) the scale of the operator and (2) the edge contrast threshold.
Note that the edge contrast thresholds in the Nalwa–Binford and
Sarkar–Boyer detectors are not necessarily directly comparable,
since each filter may scale the image values differently.

The choice of any edge detector parameter is crucial. Because
of the high combinatorics of the experimental protocol (8 to 16
judges for 8 images over edge parameter combinations), we have
to restrict the edge parameters to be from a small set of values. It
is well known that the choice of the edge detector parameter is
dependent on the image resolution and the size of the object of
interest. It is difficult to generalize a choice across all possible
images. For example, the edges with aσ of one for the Canny
operator on a 512× 512 image will differ from that on the same
image subsampled to 256× 256. Hence, it is imperative to ex-
periment with our present set of images. For each edge detector,
the plausible meaningful range of each parameter was deter-
mined by consulting the original paper and experimenting with
the implementation. From two to four settings of each parameter
value were chosen to coarsely sample the plausible meaning-
ful range. This resulted in from 6 to 12 combinations of para-
meter settings for each edge detector. Table 2 summarizes the
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TABLE 2
Combinations of Parameter Settings for the Edge Detectors

Canny

Low hysteresis threshold High hysteresis threshold σ

30%, 50% 70%, 85% 0.8, 1.4, 2.0 pixels

Nalwa–Binford

Blurring parameter Minimum edge contrast (scaled)

0.25, 0.6, 0.95 30, 45, 60 gray levels

Sarkar–Boyer

Scale of operator Minimum edge contrast (scaled)

0.4, 0.8, 1.2 10, 25, 40

Sobel

Low hysteresis threshold High hysteresis threshold

30%, 50% 70%, 80%, 90%

particular combinations of parameter values evaluated for each
detector.

B. Images

Each of the eight images (Fig. 1) was edge detected using each
set of parameter values for each detector. Thus there were 6 edge
detected versions of each image for the Sobel, 12 edge detected
versions of each image for the Canny, 9 edge detected versions of
each image for the Nalwa–Binford, and 9 edge detected versions
of each image for the Sarkar–Boyer. Printed versions of the
original images and the edge detected versions of each image
became the input to a rating task.

C. Judges for the Rating Task

Eight subjects acted as “judges” for the rating task. The judges
were all undergraduate majors in computer science or computer
engineering. They performed the rating task as part of their par-
ticipation in an NSF-funded “Research Experiences for Under-
graduates” program. They had already had some lecture and
reading material on edge detection and object recognition be-
fore performing the rating task.

D. Rating Task

The rating task was performed in multiple “sittings” across
different days. There was one “sitting” for each edge detector. On
a given sitting, each of the eight judges received a stack of printed
pages containing the eight original images and the corresponding
edge-detected versions for one edge detector. For the Sobel, the
total number of edge images for each judge was 48 (8× 6); for
the Nalwa–Binford and Sarkar–Boyer it was 72 (8× 9); and

for the Canny it was 96 (8× 12). The task was to rate the edge
detected versions on a scale of 1 (low) to 7 (high). A rating of 1
was defined as “edges seem to be without coherent organization
into an object.” A rating of 7 was defined as “all relevant edge
information for recognizing an object with no distracting edges.”
A sample rating sheet appears in the Appendix.

The different sittings lasted in the range of 20 to 40 min,
depending on the edge detector and with some variation between
judges. The judges did not know which edge detector was being
rated in a particular session.

E. Results

The raw data can be conceptualized as a large multidimen-
sional data set organized as (eight judges)× (eight images)×
(four edge detectors)× (six to twelve parameter sets). Recall
that the different edge detectors were rated in different sittings
on different days. Thus, this experimental design is not ideal
for making comparisons of one edge detector against another.
In this experiment we consider each edge detector individually
and compare the ratings of its various parameter settings.

1. Are the ratings of the judges consistent?If the judges’
ratings are inconsistent, then further analysis of the data is prob-
lematic. Thus, the issue of consistency between the judges’
ratings is considered first. The tool for analyzing consistency
between judges is the intraclass correlation coefficient (ICC).
There are a number of possible forms of the ICC and it is impor-
tant to select the appropriate one. In this experiment, the judges
rate edge images with different parameter settings of an edge
detector, and the goal is to determine the best parameter setting.
So the ICC should reflect the consistency in the judges’ mean
rating of a particular parameter setting’s edge image relative to
the overall mean of the edge images for that edge detector.

Following Shrout and Fleiss [41], the appropriate ICC is
“ICC(3, k),” defined as

ICC(3, k) = BMS− EMS

BMS
,

whereBMSis the mean square value of the rating between judges
andEMS is the total mean square error as defined below. Let
the rating of theith judge on thejth edge image be denoted
by Xi j and the total number of judges and images bea and
b, respectively. The mean of the ratings ofith judge is denoted
by X̄i . = (1/b)

∑
j Xi j . The mean of the ratings for thejth

image isX̄. j = (1/a)
∑

i Xi j . And the overall mean is̄X =
(1/ab)

∑
i j Xi j . Then,

BMS= b

a − 1

∑
i

( X̄i . − X̄)2

and

EMS= 1

(a − 1)(b − 1)

∑
i j

(Xi j − X̄i . − X̄. j + X̄)2.
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TABLE 3
ICC(3, k) Values for the Judges’ Ratings of the Edge Images

Edge detector Sobel Canny Nalwa–Binford Sarkar–Boyer

ICC(3, k) 0.88 0.81 0.94 0.89
95% C.I. 0.82–0.92 0.74–0.86 0.92–0.96 0.84–0.92

Note.The second row lists the 95% confidence intervals.

The values of the ICC can range from 0 (no consistency) to
1 (complete consistency). The ANOVA facilities of the SAS
statistical package were used to compute the components of the
ICC. The resulting ICC values are given in Table 3.

The ICC values are all relatively high, indicating good agree-
ment between the judges on the relative ratings of the edge im-
ages from different parameter settings. This suggests that the
data can reliably be used to look at the effects of image and
parameter settings.

The data from the analysis of variance due to image and pa-
rameter setting for each edge detector are summarized in Table 4.
The first column of Table 4 lists the sources of the rating vari-
ations for each edge detector which are: image, edge detec-
tor parameter choice, interaction between image and parame-
ter choice, and the remaining experimental error. The second
column lists the degrees of freedom (DF) for each source. The
number of degrees of freedom is defined as the number of “free”
available observations, which is equal to the sample sizen, minus
the numberaof parameters estimated from the sample. Since we
trying to estimate just the mean variance of each source,a = 1.

Thus, the degrees of freedom for, say, theImagesource is 7, the
number of images minus one. The third column in the ANOVA
table lists the sum of square (SS) values capturing the variation
from the grand mean value due to each of the sources. The fourth
column lists theω2 values, which reflect the relative magnitudes
of the different effects. A value of 0.15 forω2 is considered as
large, 0.06 as medium, and 0.01 as a small effect. Thisω2 is not
directly a part of the SAS ANOVA output, but it was computed
separately using the values from the SAS output. Theω2 values
can be used for comparing the magnitude of one effect to the
magnitude of another effect (other statistical outputs are not ap-
propriate for comparisons). The fifth column lists theF-values,
which are the significance test statistic, computed as the ratio of
the mean square value of a source to the mean square value of
the experimental error. The last column lists the estimated prob-
ability that the variation in the source could have arisen because
of pure chance. When this value is less than 0.05 we can reject
the null hypothesis that the variation is due to chance.

2. Do the ratings of an edge detector vary with the image?
The results summarized in Table 4 show that there is a statis-
tically significant effect due to the image (p = 0.0001, much
less than the 0.05 level). This is true for each of the four edge
detectors. This says that we can reject the null hypothesis that
the judges’ ratings are the same across images. More informally,

it says that the ratings varied with the image. (For this effect,
only variance due to images is considered; i.e., the data have
been averaged over the parameter settings).

3. Does the rating of an edge detector rating vary with its
parameter? The results in Table 4 show that, for each of the
four edge detectors, there is a statistically significant effect due to
the parameter set. This says that we can reject the null hypothesis
that the different parameter settings each produce approximately
equivalent edge information. In essence, it confirms that the edge
images represented effectively different points in the parameter
space for each edge detector.

4. Is there interaction between the chosen edge detector pa-
rameter value and the image?Finally, the results in the fourth
row (image× param.) of Table 4 show that for each of the edge
detectors there is a statistically significant interaction of image
and parameter set. This says that we can reject the null hypoth-
esis that the pattern of ratings for different parameter settings

TABLE 4
Analysis of Variance for Ratings of Edge Images

Canny edge detector

Source DF SS ω2 F-value P-value

Image 7 103.98 0.06 10.46 0.0001
Parameters 11 237.22 0.14 15.19 0.0001
Image× Param. 77 288.41 0.11 2.64 0.0001
Error 672 954.13 0.69

Nalwa–Binford edge detector

Source DF SS ω2 F-value P-value

Image 7 504.0 0.29 64.79 0.0001
Parameters 8 576.50 0.33 64.84 0.0001
Image× Param. 56 93.08 0.02 1.50 0.0146
Error 504 560.13 0.37

Sarkar–Boyer edge detector

Source DF SS ω2 F-value P-value

Image 7 101.62 0.06 9.94 0.0001
Parameters 8 278.13 0.18 23.80 0.0001
Image× Param. 56 359.24 0.19 4.39 0.0001
Error 504 736.13 0.57

Sobel edge detector

Source DF SS ω2 F-value P-value

Image 7 127.41 0.14 13.21 0.0001
Parameters 5 113.25 0.12 16.44 0.0001
Image× Param. 35 162.75 0.13 3.37 0.0001
Error 336 463.00 0.61

Note.The second column lists the degrees of freedom (DF). The third column
lists the total sum of squares (SS). The fourth and the fifth columns list theω2

and F-values, respectively. And the sixth column lists the significance levels.
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was constant across all images. More informally, it says that the
“right” parameter set varies with the image. Note the difference
between this and the interpretation for the effect due to the im-
age alone. The effect due to the image alone indicates only that
the average ratings varied with the image. That is, some images
could be “easy” and some “hard,” but it would still be possible
for the same parameter set to be the highest ranked for each
image. The interaction effect goes further, indicating that the
ranking of the goodness of the parameter sets varies between
images; a given parameter set may be good for one image but
not for another. Note that this combined effect is weakest for the
Nalwa–Binford detector.

The above conclusion is further substantiated by theω2 values
in Table 4, where we note that for the Nalwa–Binford detector,
33% of the total variation can be explained by the parameter
variations. The interaction between the image and parameter
choice accounts for just 2%. This is not true for the other three
edge detectors.

F. Summary

The analysis of the data from our first experiment indicates
that

1. The judges’ ratings of the various edge images are reason-
ably consistent for the purpose of this experiment.

2. For each edge detector, there is a statistically significant
effect due to the image.

3. For each edge detector, there is a statistically significant
effect due to the parameter set.

4. For each edge detector, there is a statistically significant
combined effect due to image× parameter set, although this is
weaker for the Nalwa–Binford detector.

V. EXPERIMENT #2: COMPARISON RATING
OF EDGE DETECTORS

The purpose of this second experiment was to make a di-
rect comparison between edge detectors. Such a comparison is
complicated by the finding in the first experiment that there is a
statistically significant interaction of image and parameter set.
The current state of the art in edge detection does not allow for
the edge detector to automatically adapt the parameter set used
to the characteristics of each image. Thus, the second experi-
ment is designed to assess two scenarios for edge detection. For
the “current practice” scenario, we select (for each edge detec-
tor) the best fixed parameter set to use across all images. For the
“ideal practice” scenario, we select the best parameter set for
each edge detector for each individual image. We call this set
the adapted parameter set. Thus, for each edge detector, we have
one set of eight edge images which represents the same fixed pa-
rameter set applied to each image. We have another set of eight
edge images which represents the (adapted) best parameter set
for each image. In general, there will be some overlap in the
two sets of eight images, but the results of the first experiment

mean that, except for the Nalwa–Binford, there will not be much
overlap.

A. Judges for the Rating Task

Sixteen subjects acted as “judges” for the rating task. The
judges were either undergraduates or graduates in the computer
science and engineering program conducting research in com-
puter vision. Three of the judges in this experiment also partic-
ipated in the rating task for the first experiment.

B. Rating Task

For each judge, the rating task was performed in one sitting.
Each judge received a stack of printed pages containing for each
image: the original image and eight edge images of that image.
The eight edge images come from four different edge detectors
with the parameter set chosen as fixed or varying. Thus each
judge rated a total, across the four edge detectors, of 64 (8× 8)
edge images. The time taken by each judge was not limited. The
different judges took between 30 to 60 min to perform the rating
task.

We systematically varied the order of gray level images that
were presented to each subject using two 8× 8 Latin squares.
This was done to average any effects due to judges “learning”
during the experiment. Since each person had the ability to lay
the edge detections of a given output side-by-side for direct
comparison, the ordering of the edge images was not regarded
as crucial. However, to control any possible effects we randomly
shuffled the edge images for each gray level image.

C. Results

The conditions in this experiment were defined by three in-
dependent factors: edge detector, parameter set (fixed versus
adapted), and image. The consistency between the judges’ rat-
ings was high, with an ICC (3,k) value of 0.92. (This intraclass
correlation coefficient was discussed in Section III.)

The results from a three-way ANOVA analysis are tabulated in
Table 5. The first three rows depict the variance for the three indi-
vidual sources. The next three rows correspond to the variances

TABLE 5
ANOVA Results for Edge Detector Ratings

Source DF SS ω2 F-value P-value

Detector (D) 3 320.39 0.12 78.55 0.0001
Parameters (P) 1 50.32 0.02 37.01 0.0001
Image (I) 7 76.48 0.03 8.04 0.0001
D × P 3 26.04 0.01 6.38 0.0003
P× I 7 48.80 0.01 5.13 0.0001
D × I 21 443.90 0.16 15.55 0.0001
D × P× I 21 82.06 0.02 2.87 0.0001
Error 960 1509.81 0.63

Note.The columns list the degrees of freedom (DF), sum of squares (SS),
computedF value, and the significance level.
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TABLE 6
Average Rating of the Edge Detector Ratings for Fixed

and Adapted Parameters

Canny Nalwa–Binford Sarkar–Boyer Sobel

Fixed 4.4 4.4 3.2 2.9
Adapted 4.8 4.4 4.1 3.5
Difference 0.4 0.0 0.9 0.6

attributable to the pairwise interactions between the factors. The
last row is for the interaction among all three factors. Note that
all the interactions are significant. We use this table to answer
to the following questions.

1. Is there a statistically significant difference between rat-
ings for fixed versus adapted parameters?From the ANOVA
results listed in Table 5, we see that there is a statistically signi-
ficant difference between the ratings for fixed parameters versus
adapted parameters averaged over all images and the four edge
detectors. The data in Table 6 show that the average ratings from
the adapted parameter sets are generally higher, as one would
expect.

2. Is there interaction between fixed versus adaptive para-
meter values and the edge detectors?The answer is yes. The
fourth row of Table 5 lists the variance due to this interaction.
This can be interpreted as saying that for some edge detector
the difference between ratings for adapted and fixed parame-
ters is greater than others. This is also clearly seen in Table 6,
which shows that the difference between fixed versus adapted
parameters is greatest for the Sarkar–Boyer (the performance
was much better with adapted parameters then with fixed) and
least for the Nalwa–Binford (performance is identical between
fixed and adaptive parameters). In fact, for the Nalwa–Binford
the best fixed parameter choice was also the best adapted para-
meter choice for seven of the eight images. (Consistent with
this conclusion, recall that Table 4 shows that the image and
parameter interaction is weakest for the Nalwa–Binford).

We conducted further analysis within the data divided ac-
cording to fixed or adapted parameters. Table 7 lists the average
ratings of each edge detector for each image. Table 8 lists the
ANOVA results within each parameter choice type. The three
main sources of variations are the edge detector (D), image (I),
and the interaction between image and the edge detector. The last
column of Table 8 shows that each of the effects is statistically
significant.

From theω2 column of Table 8, we note that variance in rat-
ing due to the detector accounts for just 9% of the total rating
variance in the adapted parameter case, versus 18% in the fixed
parameter case. Thus, as one would expect, the variance due to
the edge detector decreases with the adapted choice of parame-
ters; performance becomes more similar between the detectors
when the parameters are adapted for each image.

TABLE 7
Average Rating for Individual Images for Fixed

and Adapted Parameters

Canny Nalwa–Binford Sarkar–Boyer Sobel

Fixed parameter case
Briefcase 4.13 5.13 3.94 2.88
Trash can 3.69 2.94 3.56 2.88
Camcorder 5.75 3.13 4.81 3.06
Coffee maker 5.44 4.44 3.69 3.38
Flower 4.31 4.38 2.31 2.56
Plane 4.00 5.00 2.81 1.69
Cone 3.56 5.38 2.81 2.94
Stairs 4.63 4.69 1.88 4.06

Adapted parameter case
Briefcase 4.44 5.25 3.81 2.56
Trash can 5.13 2.81 5.25 2.81
Camcorder 5.31 2.81 4.94 2.94
Coffee maker 5.50 4.19 3.75 4.88
Flower 4.31 4.56 2.69 2.81
Plane 5.06 5.25 3.81 4.50
Cone 3.81 5.50 4.31 2.88
Stairs 4.81 4.56 4.13 4.63

3. For fixed parameters, are there differences in ratings bet-
ween edge detectors?The first row of Table 6 lists the av-
erage ratings of each edge detector over all the images for
the fixed parameter choice case. The mean values suggest the
following ranking of the edge detectors: Canny, Nalwa–Binford,
Sarkar–Boyer, and Sobel. But are the rating differences statisti-
cally significant? To answer this we use ANOVA to compare all
pairsof edge detectors. The results are tabulated in Table 9. The
row for the source D (or the edge detector) shows the variance
attributable to the differences in the edge detector ratings. The
values in the last column list the estimated significance values.

Care must be taken in interpreting these significance values
since we are performing multiple comparisons on the same data.
In the current case we are conducting six pairwise comparisons,

TABLE 8
ANOVA Results for Edge Detector Ratings for Fixed and Adapted

Parameters, Considered Separately

Source DF SS ω2 F-value P-value

Fixed parameter choice
Detector (D) 3 232.94 0.18 48.99 0.0001
Image (I) 7 64.69 0.04 5.83 0.0001
D × I 21 249.04 0.17 7.48 0.0001
Error 480 760.81 0.62

Adapted parameter choice
Detector (D) 3 113.48 0.09 24.24 0.0001
Image (I) 7 60.59 0.04 5.55 0.0001
D × I 21 276.92 0.20 8.45 0.0001
Error 480 749.00 0.67
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TABLE 9
ANOVA Results for Pairwise Considerations of Edge Detector Ratings for Fixed Parameters Choices

Canny and Nalwa–Binford Canny and Sarkar–Boyer

Source DF SS ω2 F-value P-value Source DF SS ω2 F-value P-value

D 1 0.19 0.0 0.11 0.7413 D 1 93.85 0.15 62.21 0.0001
I 7 51.40 0.07 4.19 0.0002 I 7 125.50 0.18 11.88 0.0001
D × I 7 109.78 0.17 8.95 0.0001 D× I 7 46.37 0.06 4.39 0.0001
Error 240 420.56 0.77 Error 240 362.06 0.61

Canny and Sobel Nalwa–Binford and Sarkar–Boyer

Source DF SS ω2 F-value P-value Source DF SS ω2 F-value P-value

D 1 145.50 0.22 89.84 0.0001 D 1 85.56 0.13 55.18 0.0001
I 7 84.15 0.11 7.42 0.0001 I 7 48.30 0.06 4.45 0.0001
D × I 7 37.03 0.04 3.27 0.0025 D× I 7 144.25 0.20 13.29 0.0001
Error 240 388.69 0.63 Error 240 372.13 0.61

Nalwa–Binford and Sobel Sarkar–Boyer and Sobel

Source DF SS ω2 F-value P-value Source DF SS ω2 F-value P-value

D 1 135.14 0.20 81.34 0.0001 D 1 5.64 0.01 3.98 0.0472
I 7 62.69 0.08 5.39 0.0001 I 7 71.06 0.12 7.16 0.0001
D × I 7 79.17 0.10 6.81 0.0001 D× I 7 81.48 0.14 8.21 0.0001
Error 240 398.75 0.63 Error 240 340.25 0.73

Note.Source D is the edge detector, source I is the image, and source D× I is the interaction between the edge detector and the image.

which are not all independent tests. One way of handling this
problem is to adjust the significance thresholds for the individual
tests. We use the modified form of the Bonferroni test [39] to se-
lect the significance value appropriate for the pairwise tests. The
threshold significance value for the pairwise tests,αp, is related
to the overall significance,α, by: αp = (α)(DF)/n, whereDF
is the degrees of freedom andn is the number of comparisons.
In our case,DF is 3, the number of edge detectors minus one,
andn is 6. Thus, if we want an overall significance threshold
of 0.05 (95% confidence), then we have to useαp = 0.025 in
the pairwise comparison. The results in Table 9 show that every
pairwise difference between edge detectors is statistically signi-
ficant,exceptthe difference between Canny and Nalwa–Binford
(p = 0.741) and Sarkar–Boyer and Sobel (p = 0.0472). Thus
the final ranking of the edge detector ratings for fixed parameter
choices is: (Canny, Nalwa–Binford), (Sarkar–Boyer, Sobel).

4. For fixed parameters, is there interaction between the de-
tector and the image? The third row of the fixed parameter
case in Table 8 denotes the interaction between the image and
the edge detector. We see that the variation attributable to this in-
teraction term has very low probability of occurring by chance.
In fact, theω2 values indicate that about 17% of the rating vari-
ance can be attributed to this interaction between the image and
the edge detector. Thus, the relative goodness of edge detectors
varies with the images.

5. For adapted parameters, is there a difference in the ratings
between edge detectors?The second row of Table 6 lists the

average ratings of each edge detector over all the images for the
adapted parameter choice case. The mean values suggest the fol-
lowing ranking of the edge detectors: Canny, Nalwa–Binford,
Sarkar–Boyer, and Sobel. Again, to determine if these differ-
ences are statistically significant, we conduct analyses between
all pairsof detectors. The results are tabulated in Table 10. The
row for the source D shows the variance attributable to the differ-
ences in the edge detector ratings. The values listed in the last
column list the estimated significance values.

Recall that, for an overall statistical significance of 0.05 (95%
confidence), we have to test for significance withαp = 0.025
for each individual pairwise test. The results in Table 10 show
that every pair difference between edge detectors is statistically
significantexceptthe difference between Nalwa–Binford and
Sarkar–Boyer. In other words the observed difference in ratings
between these two edge detectors is not statistically significant.
Thus the final ranking of the edge detector ratings for adapted
parameter choices is: Canny, (Nalwa–Binford, Sarkar–Boyer),
and Sobel.

6. For adapted parameters, are there interactions between
edge detectors and images?Yes. From the sixth row of the
ANOVA table we see that there is statistically significant
interaction between edge detectors and images. That is, the rat-
ings of edge detectors vary with the images. Table 7 lists the
mean ratings of the edge detectors on each image for adapted
parameter choices. Notice that the ranking of the edge detec-
tors does vary with the image. For example, in the trash can
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TABLE 10
ANOVA Results for Pairwise Considerations of Edge Detector Ratings for Adapted Parameter Choices

Canny and Nalwa–Binford Canny and Sarkar–Boyer

Source DF SS ω2 F-value P-value Source DF SS ω2 F-value P-value

D 1 11.82 0.02 7.10 0.0082 D 1 32.35 0.06 21.40 0.0001
I 7 36.81 0.04 3.16 0.0033 I 7 70.03 0.12 6.62 0.0001
D × I 7 124.09 0.20 10.65 0.0001 D× I 7 35.93 0.05 3.40 0.0018
Error 240 399.56 0.74 Error 240 362.81 0.77

Canny and Sobel Nalwa–Binford and Sarkar–Boyer

Source DF SS ω2 F-value P-value Source DF SS ω2 F-value P-value

D 1 107.64 0.18 73.52 0.0001 D 1 5.06 0.01 3.06 0.0817
I 7 103.98 0.16 10.15 0.0001 I 7 40.05 0.05 3.45 0.0015
D × I 7 39.36 0.05 3.84 0.0006 D× I 7 154.13 0.24 13.29 0.0001
Error 240 351.38 0.62 Error 240 397.63 0.71

Nalwa–Binford and Sobel Sarkar–Boyer and Sobel

Source DF SS ω2 F-value P-value Source DF SS ω2 F-value P-value

D 1 48.13 0.07 29.91 0.0001 D 1 21.97 0.04 15.09 0.0001
I 7 133.84 0.18 11.88 0.0001 I 7 74.00 0.12 7.26 0.0001
D × I 7 97.71 0.13 8.68 0.0001 D× I 7 102.62 0.17 10.07 0.0001
Error 240 386.19 0.62 Error 240 349.44 0.68

Note.Source D is the edge detector, source I is the image, and source D× I is the interaction between the edge detector and the image.

and camcorder images the Nalwa–Binford detector ratings drop
significantly and that of the Sarkar–Boyer operator increases.
However, for the cone image, the Canny operator output is rated
lower than the Nalwa–Binford operator. We do not fully under-
stand the cause of this intriguing effect. But one implication is
clear:No one single edge detector was best overall; for any given
image it is difficult to predict which edge detector will be best.

We display the edge images where each edge detector received
its highest ratings in Figs. 2–4. (Please refer to the second chart
in Table 7 for the average ratings.) Figure 2 shows the image on
which the Canny and the Sobel edges received their respective
highest ratings. The Nalwa–Binford received its lowest rating
on this image. The Sarkar–Boyer received its highest rating on
the “trash can” image shown in Fig. 3. The Nalwa–Binford re-
ceived its highest rating on the “traffic cone” image shown in
Fig. 4. On this cone image, the Canny received its lowest ratings.
This reversal in ratings demonstrates the interaction between the
image and the edge detectors. We would also like to note that
the Nalwa–Binford detector might have been rated high for the
cone image because of clear delineation of the cone base. The
output of the Nalwa detector is not one pixel wide, while the
other detectors have one pixel wide edges. (We plan to set up
controls for this in future experiments.) This might contribute to
the differences in the ratings.

D. Summary

The analysis of the data from the second experiment show
that

1. Edge quality was reduced when fixed parameters were
used instead of adapted parameters. However, this reduction in
quality varied with the detector; the quality was the lowest for
the Nalwa–Binford detector.

2. For fixed parameter choices, the final overall ranking of
the edge detectors is: (Canny, Nalwa–Binford), (Sarkar–Boyer,
Sobel).

3. For adaptively chosen parameters, the final overall ranking
of the edge detectors is: Canny, (Nalwa–Binford, Sarkar–Boyer),
Sobel.

4. However, in (2) and (3), the rankings also varied with the
image. With at least some images, the order of the rankings could
reverse.

VI. DISCUSSION AND CONCLUSION

We have introduced a methodology for rating of low-level
vision algorithm outputs by humans using experimental proce-
dures and statistical methods borrowed from psychology. We
have used this methodology to compare the performance of four
well-known edge detectors. Based on these experiments, we can
make three major observations. We discuss these next, followed
by a discussion of possible concerns regarding the experiments.

A. Observations

First, we observe that there are statistically significant differ-
ences between the ratings of the edge detectors. However, the
average rating values for the detectors considered (see Table 6)
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FIG. 2. The highest ratings for the Canny and Sobel edges were on the coffee maker image.
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FIG. 3. The highest rating for Sarkar–Boyer edges was on the trash can image.

lie in a relatively small range (3.5 to 4.8) on a 7-point scale.
Thus, while we can measure progress in the quality of the edge
detector output (as perceived by humans) from the days of Sobel
to Canny, there is substantial room for further improvement.

Second, the optimal parameter settings of an edge detector
are strongly dependent on the image (see Table 7). This effect
is less pronounced for the Nalwa–Binford edge detector than
the other three detectors. Thus, for the Nalwa–Binford operator
one can choose a fixed set of parameters and be more likely to
obtain edges of consistent quality, but the quality may be low
for some images (e.g., for camcorder and trash can images).
However, the quality of the edges of the other three detectors
varies greatly with a fixed parameter choice. This suggests the
need for strategies of adaptively choosing the parameters of these
edge detectors based on domain and image characteristics.

From a practical point of view, a practictioner wanting to
select an edge detector for use in their work might look at the

results in the following way. If the images to be analyzed are all
fairly similar in content, or if the application allows for tuning the
parameters of the detector for each image, then the best choice is
probably to use a well-tuned Canny detector. If the application
requires choosing a fixed set of detector parameters with which
to analyze a broad variety of images, then the Nalwa–Binford
detector may be a better choice. Of course, the scope of these
conclusions is limited to the edge detectors analyzed here and
to the breadth of the images analyzed here.

Third, and perhaps the most surprising result, is that therela-
tive performance of the edge detectors varied statistically sig-
nificantly across the images. This seems to indicate that there
is something about each of the edge detectors (except for the
Sobel) that makes it “best” for some type of image. This is
contrary to the assumption that edge detection is a context-
independent, purely bottom-up process. This suggests that it
may be worthwhile to incorporate context information into the
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FIG. 4. The highest rating for the Nalwa–Binford edges was on the cone image.

edge detection process. It might well be that there is no edge de-
tector which performs well in all contexts. In that case, we need
to identify the contexts in which an edge detector performs well.
It also suggests the need for automated methods of determining

contexts and then adapting the edge detection strategy appropri-
ately, such as the adaptive estimation of hysteresis threshold in
[42]. Thus, the researcher working on edge detection might view
our results as suggesting areas for future work. Although some



       

EDGE DETECTORS: METHODS AND STUDY 53

FIGURE 5

of the observations mentioned here were surmised elsewhere
[43], the present study provides concrete evidence for them.

B. Experimental Concerns

One possible concern regarding the present experiment is the
step of choosing the best parameter set for each detector. Six pa-
rameter sets were considered for the Sobel, nine parameter sets
for each of the Sarkar–Boyer and the Nalwa–Binford, and 12
parameter sets for the Canny. One might argue that this some-
how biases the experimental procedure against the Sobel and
for the Canny, and that a fair comparison would consider an
equal number of parameter sets for the edge detector. This, of
course, is not realistic. The parameters available to be adjusted,
and their plausible ranges, are part of the particular method of
edge detection. It is simply not possible to have an equal number
of analogous parameter sets for each of a range of different edge
detectors.

Another possible point of debate is that in the present study
we used the thick edges (greater than one pixel wide) produced
by the Nalwa–Binford edge detector, whereas for the other de-
tectors, the edges were one pixel wide. We plan to rectify this
to eliminate the possibility of effects due to differences in edge

thickness in future studies. We do not, however, expect the con-
clusion to be significantly different.

We would also like to add a caveat. The method we used and
propose for general use is a comparative one. We collect ratings
for a set of edge detectors, and images in one experiment and
test differences in the means for significance. This does well
for a given comparison of a fixed set of edge detectors (as we
showed); however, comparisons must be done with caution. For
example, if we run a second experiment using a new set of edge
detectors and images, those results will be separate from the
results of the present experiment. However, if the same images,
along with some of the present algorithms, are used, comparisons
may be done across experiments. Thus, to allow others to more
readily extend our work, the images used in this experiment will
be available on our ftp site. This would also permit people to
perform experiments to verify our results.

We believe that as the field of computer vision better deve-
lops its experimental side, researchers will replicate, compare,
and build on the previous work of others. However, one has to
be careful in extrapolating experimental conclusions to different
contexts. The edge detector ratings produced in our method are
not absolute numbers that can be readily compared to ratings pro-
duced in an entirely new experimental context. Conclusion for
other contexts can be made only based on experiments designed
for those contexts. We hope the present study would encourage
others to undertake such studies.

APPENDIX: SAMPLE QUESTIONAIRE

Figure 5 shows a sample rating sheet used by a judge. A rating
of 1 was defined as “edges seem to be without coherent organi-
zation into an object.” A rating of 7 was defined as “all relevant
edge information for recognizing an object with no distracting
edges.”
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